
EcoBeach Group Part
Semesterproject in Scalable Systems (E21)

Gábor Gulásci

gagul21

Niels Faurskov

niean15

Nikolai Emil Damm

nidam16

Zsófia Bardócz

zsbar21

January 3, 2022

Character count with spaces: 25230 ≈ 10,5 pages.

Contents

1 The Problem 1

1.1 Problem and Objective . 1

1.2 Problem Description . 2

2 The Solution 4

2.1 Solution Approach . 4

2.1.1 Advantages and Disadvantages . 6

2.2 Solution Description . 7

2.2.1 Big Data stack . 7

2.2.2 The infrastructure . 8

2.2.3 Sentinel Satellite Scraper . 12

2.2.4 Spark NDWI Analyzer . 16

2.2.5 WebAPI . 17

2.2.6 EcoBeach App . 19

3 Conclusion 23

Acronyms . 23

Bibliography 25

A Infrastructure Diagram 26

i

Chapter 1: The Problem

In this chapter, we will describe the problem addressed by EcoBeach, a system built as part

of the Semester Project in Scalable Systems, on the first semester on the masters of Software

Engineering SDU.

First, a problem definition will be given, along with the overall objective. Next, an in-depth

problem description is presented, where the sub-problems will be unveiled, and why it is

necessary to derive a solution.

1.1 Problem and Objective

At present, the ecology is threatened by increasing changes to the climate. One of the notable

climate changes is the rising shorelines that are predicted to rise to critical heights in the

21st century. According to the publication, Sea level rise and its coastal impacts, by Anny

Cazenave and Gonéri Le Cozannet, we will see an average increase of 40-75 cm on a global

scale by the year 2100 [1, p. 23]. This increase will not happen uniformly, and some areas

will see higher sea levels than others [1, p. 21], which can result in sea level increases of up

30% in some regions [1, p. 23]. In Figure 1.1 a projection of the expected sea-level rise by

the year 2100 is illustrated.

As rising shorelines are a growing threat, it is imperative to react and minimize climate

change, but sadly, this might not be something humanity can do on time. Therefore, moni-

toring how the shorelines are changing is paramount to alleviate the risk of rising shorelines.

This growing threat and the accompanying concerns preface the problem that is:

Humanity might not combat climate change to avoid massive floods in cities and

countries. Currently, there are not enough accessible options to monitor how

shorelines are changing to prepare for or predict floods.

This project aims to solve this problem by creating a system capable of processing satellite

imagery of geo-locations worldwide in real-time to determine how the shorelines have changed

1

CHAPTER 1. THE PROBLEM 2

Figure 1.1: A projection of expected sea level regional variability by year 2100. Taken from,

Sea level rise and its coastal impacts, by Anny Cazenave and Gonéri Le Cozannet [1, p. 27]

(Copyrightable under the terms of the Creative Commons Attribution-NonCommercial-

NoDerivs License)

and are changing.

The project will rely on mobile sensing and various big data technologies and tools to

create such a system.

1.2 Problem Description

Monitoring shorelines is quite attractive; having historical and current data on shoreline

changes can potentially help both the public and the private sector.

In the 21st century, governments will need to develop new and ingenious ways to combat

the rising shorelines and avoid floods. Knowing where shorelines are rising the most can be

a huge factor in helping decide where to preemptively build solutions that can help prevent

large floodings and the destruction of properties and, potentially, cities. Some governments

already have needed to find solutions to flooding, which is apparent when looking at the

Netherlands that have built resilient solutions to prevent floods, e.g., the Maeslantkering

https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/

CHAPTER 1. THE PROBLEM 3

storm surge barrier [2].

It might also be beneficial to know how shorelines are changing in the private sector. Knowing

this can be helpful to make informed decisions about where to settle down or prepare for

floods for individuals living at places at risk.

From a technical perspective, creating a system capable of processing satellite imagery in

real-time is a daunting task with many sub-problems that need to be solved to make it

feasible. To derive a solution, we believe the following sub-problems must be solved:

• How to download satellite images from Copernicus?

• How to process images, so water is differentiated from land?

• How to build a system capable of handling big data?

• How to build a system capable of real-time processing?

• How to build a highly resilient system?

• How to build a mobile application that uses mobile sensing in a meaningful way to

visualize shoreline changes?

It is paramount that these problems can be solved to derive a feasible solution to monitor

shorelines in real-time. Such a solution, EcoBeach, is described in detail in the next chapter.

Chapter 2: The Solution

This chapter will present EcoBeach, a highly resilient distributed system that can process

satellite imagery in real-time and analyze the difference in water levels on given geo-locations.

EcoBeach collects data from beach locations (hence the name EcoBeach). Limiting geo

locations to beaches in select countries is a deliberate choice, as the available server resources

currently restrict the solution’s scalability.

In section 2.1 Solution Approach EcoBeach will be described at a high-level. First, a sum-

mary of solutions to the sub-problems in section 1.2 is given. Next, the infrastructure of

EcoBeach is presented to show how the solutions to each of the sub-problems complement

each other to provide a feasible solution to monitoring shorelines.

Lastly, the advantages and disadvantages of EcoBeach will be presented.

2.1 Solution Approach

EcoBeach consists of services and applications that play a crucial role in monitoring shore-

lines. There is a total of 11 services/applications as shown in Table 2.1.

The services in EcoBeach were chosen or created to provide solutions to the sub-problems.

Below a summary of each solution to the sub-problems is presented.

How to download satellite images from Copernicus? To download satellite images,

we created a resilient scraping service that continuously downloads and pre-processes satellite

images on given geo-locations. The scraping service is described in detail in subsection 2.2.3.

How to process images so water is differentiated from land? For this purpose, we

pre-process images during the scraping process, so they are saved as black and white images

according to their Normalized Difference Water Index (NDWI) value. Then we created the

Spark NDWI Analyzer, a Spark Job, that analyzes downloaded satellite images to determine

what is water or land. The Spark NDWI Analyzer is described in subsection 2.2.4.

4

CHAPTER 2. THE SOLUTION 5

Service name Service description

Sentinel Satellite

Scraper

A python script that downloads and pre-processes satellite im-

agery

Spark NDWI Analyzer A Spark job that analyzes pre-processed satellite images for

shoreline changes.

Kafka A distributed event streaming service, where intermediary data

is saved as part of the processing pipeline.

Spark A large-scale data analytics framework that supports publishing

jobs that are processed on distributed Spark Workers.

Hadoop A framework that allows distributed file storage primarily with

HDFS. Used for saving checkpoints and the pre-processed satel-

lite images.

Zookeeper A centralized service to enable reliable distributed coordination

for Hadoop and Kafka.

MongoDB A distributed database to save and query fully processed data.

MongoDB Kafka Con-

nector

A sink connector for Kafka to feed fully processed data from

Kafka to MongoDB

Kowl An intuitive monitoring service that allows viewing and config-

uring running Kafka services.

WebAPI A .NET WebAPI to provide a nice interface for querying data

from MongoDB

Android Application The EcoBeach app where fully processed data is represented with

the google maps interface.

Table 2.1: The services/applications in the EcoBeach system

CHAPTER 2. THE SOLUTION 6

How to build a system capable of handling big data? To create a system capable

of large-scale data processing and analysis, we created a stack that relies on distributed

systems that are very scalable and fault-tolerant. The stack includes Kafka, Spark, Hadoop,

Zookeeper, and MongoDB and is described in subsection 2.2.1

How to build a system capable of real-time processing? The main contributor to

this is Kafka and Spark. Kafka allows us to create topics with intermediary data, where our

Spark NDWI Analyzer Spark Job is set up as a consumer that processes new entries as they

are created. Together with the rest of the stack, it allows us to create, process, and feed

data to MongoDB quickly and reliably as new data is entering the system.

How to build a highly resilient system? To make EcoBeach a resilient system, we

identified single-points of failure and added load-balancing and distribution of services to

ensure that the system would function reliably in case of failures. Docker Swarm as the

chosen container orchestration tool was a massive help in configuring this. This is described

in more detail in subsection 2.2.2.

How to build a mobile application that uses mobile sensing in a meaningful way

to visualize shoreline changes? To make the EcoBeach app utilize mobile sensing, we

made the app rely on the user’s current location and provide data accordingly. As the

EcoBeach app is an Android application, the Google Maps API is what the app relies on to

provide most of its features. The EcoBeach app is described in detail in subsection 2.2.6

2.1.1 Advantages and Disadvantages

The applications, the cluster, and the features they provide make for a robust configuration

that is scalable. Our infrastructure can easily handle the limited intake retrieved from the

Sentinel 2 API. Additionally, the current setup incorporates redundancy in many levels; as

such, the database, event processing (Kafka), and the scrapers can easily recover if a service

should fail; this will be further explored within subsection 2.2.2.

The android app provides a clear view of the available data points and gives the user instant

access to relevant metrics surrounding the beaches. Additionally, the setup can download

and examine historical data, which allows for analytics. These analytics can, in the future,

be used to track and extrapolate the changes occurring over time, which could, in turn, be

used to estimate the future of beach health.

CHAPTER 2. THE SOLUTION 7

The disadvantage of this approach is that the scrapers can often sit and wait for incoming

data. The satellite imagery is not real-time, and thus the solution cannot offer real-time user

alerts. The android app currently shows limited information gathered and should contain

more contextual information for the end-user.

2.2 Solution Description

In this section, an in-depth description of the solution is presented. First, the hosting setup

and the central services that drive the data pipeline are explained. After this, the services

that create, read, process, and visualize data in EcoBeach are presented.

2.2.1 Big Data stack

When planning our project, distributed data storage and redundancy was one of the most

important aspects we were looking to implement. Our cluster runs on multiple servers - or

nodes - with one designated as master - or name node - to provide redundancy and reduce,

or completely eliminite risk of data loss. Since the sheer size of the data that we request

and analyze from the Sentinel2 API demands parallel processing, we also implemented the

necessary tools to provide a seamless streaming of data.

HDFS

When image scrapers are running on all the servers, they store their data in the Hadoop

Distributed File System. Our HDFS consists of three servers, out of which our Helsinki

server is the name node, and all three servers are data nodes. The name node manages the

filesystem meta-data, while the three data nodes store the actual data.

Kafka

Kafka is running on all servers and connects individual parts of our clusters via Kafka Connect

streams. We used Kafka topics to differentiate between the origin of the data, whether it is

the raw data coming from the NDWI scrapers or the analyzed images. Kafka provides us

with the opportunity to stream our data within the cluster.

Spark

We use Apache Spark for our image analyzers which helps us process the data in batches via

a continuous process stream. The data is consumed from Kafka continously and distributed

CHAPTER 2. THE SOLUTION 8

Spark workers run a python job for image analyzation.

MongoDb

Our choice of distributed database is MongoDB with one replica set that replicates data on

Helsinki and Nuremberg. MongoDB is running on two server instances for extra redundancy.

As a document-based NoSQL database, it stores its objects in JSON format, making it easier

to communicate data to the API.

2.2.2 The infrastructure

This section describes the solution’s infrastructure, how everything is tied together, how

services communicate, and this setup’s resilience. Additionally, it aims to give the reader a

better understanding of the need for the different services and sheds light on why the specific

setup was selected.

The infrastructure of EcoBeach consists of three servers that are placed in different cities

within the EU, hereunder:

• Helsinki, Finland

• Falkenstein, Germany

• Nuremberg, Germany

These servers make up the EcoBeach cluster and will be referenced as the cluster hence-

forth. Each server is unmanaged and runs a clean Ubuntu 20.04 installation supplied by

Hetzner. At the time of setup, Hetzner’s pool of servers was only available within Germany

and Finland, hence the three servers’ placement. The servers are placed within a subnet,

allowing them to communicate securely and without interference. Nodes and servers will be

used interchangeably throughout the remainder of this section.

For a more detailed overview of the setup, please consult the infrastructure diagram in

Appendix A, which visualizes the interactions occurring between the services and how they

relate to each other.

Container Orchestration

Setting up services across many nodes can be cumbersome and painful; additionally, config-

uring each service manually increases the risk of incorrectly setting up the configuration. A

bad configuration can easily result in many hours spent debugging or the cluster becoming

CHAPTER 2. THE SOLUTION 9

unstable down the road until the root cause is found. Today, many of these pain points can

be alleviated by container orchestration, which takes care of the communication between the

nodes, and enables a master node to distribute services across the cluster intelligently.

The EcoBeach cluster uses Docker Swarm, mainly because of the group’s current knowl-

edge and experience with docker. Also, its interoperability with docker-compose files makes

orchestration a breeze with most services. Docker Swarm also takes care of load-balancing

- once a service is exposed externally, docker will automatically make sure incoming re-

quests are distributed equally by round-robin selection. Additionally, Docker Swarm is

fault-tolerant and will automatically bring up a service that may have halted unless oth-

erwise specified.

Docker Swarm also allows for placement constraints, which is incredibly useful when a

specific service should only be available on a specific node.

Deployment of the project’s codebase is relatively easy with docker swarm. Code that

should be deployed is wrapped in a docker image and then uploaded to a docker registry.

Afterward, the image can be used as a distributed service within the cluster by including it

as a docker-compose file.

The entirety of EcoBeach’s cluster, except our database, is being managed by Docker

Swarm.

Management of services in the cluster

The following services are managed through docker swarm:

• Kafka (and ZooKeeper)

• Apache Hadoop HDFS

• Apache Spark

• EcoBeach Codebase

– NDWI Scraper

– Image Analyzer

– Rest API

Besides these services, our MongoDB instance is manually managed due to intricate settings.

CHAPTER 2. THE SOLUTION 10

Data ingestion and travel path

The data ingestion and the application’s entry point occur within the NDWI scraper. The

NDWI scraper services are never exposed externally; however, they communicate internally

with our Kafka services and regularly publish to specific Kafka topics.

The scrapers continually download satellite imagery, processes it into grayscale images,

and publish it to Kafka for further operations. For a more in-depth description of how the

Sentinel Satellite Scraper (SSS) works see subsection 2.2.3.

While these services are not necessarily scraping all the time, the services are always

up and running, making them highly available. The services are also replicated across the

cluster since retrieving the relevant data is often a slow process with the sentinel 2 API. When

replicated, the data intake and throughput are increased. This increase makes much sense

since the cluster can handle a much larger intake than the amount of relevant data provided

by the Sentinel 2 API. Additionally, this setup has the added benefit of also allowing for

more granular control, as each replicated service is responsible for a different region. If the

cluster’s performance is under strain, a region can be disabled temporarily and reenabled at

another time when the cluster is no longer under load.

Event streaming

When the number of services within the cluster grows, intercommunication can become

troublesome and, at worst, force one to continually make cumbersome changes to each service

until communication is made. The solution to this problem is Kafka. Kafka follows the pub-

sub event pattern and thus provides a stream with N amounts of topics that the services can

publish or subscribe to.

The cluster runs three Kafka brokers, one on each server. Additionally, the Helsinki node

runs zookeeper, which (amongst many other things) synchronizes incoming jobs and keeps

track of what is Kafka is doing across the cluster. Having brokers on each node introduces

redundancy and allows for better distribution of the incoming/outgoing messages. Kafka also

makes the cluster very scalable, as newer services can start consuming on different topics if

need be, without necessarily interfering with current working services. Another benefit to

Kafka is Kafka Connect, which integrates external services by installing a specific plugin.

Once set up, sources and sinks can be created that Kafka can produce to or consume from

respectively.

Communication between the brokers and the other services is currently limited to internal

networking. Not only does this make the infrastructure more secure, but since all the services

reside on the same network, there is simply no need for it to be publicly accessible.

CHAPTER 2. THE SOLUTION 11

The Kafka brokers are used by:

• The NDWI Scraper (Producer):

– Produces whenever an image matches the filter, metadata and grayscale are pro-

duced to the ”ndwi images” topic.

• The Image Analyzer (Producer and Consumer):

– Consumes on the ”ndwi images” topic; thus, whenever an image is available, this

service will analyze the image to better understand the amount of water to shore

ratio within the area supplied in the image.

– Produces the resulting data set onto the ”ndwi results” topic.

• MongoDB connector (Consumer):

– Consumes items from the ”ndwi results” topic and copies the contents to the

MongoDB database through Kafka Connect.

Data storage

The database of choice was settled on MongoDB. MongoDB is great in a big data context,

as it scales incredibly well, with built-in tooling for redundancy and sharding, which is often

lacking in many other DBMS solutions, or left to external plugins with added overhead.

Furthermore, MongoDB being document-oriented makes it straightforward to store data of

different structures, as in the case of the data coming from our Kafka Connect connector.

MongoDB is also well supported within the developer community, making it possible to

connect and communicate with the database in many different languages and frameworks.

MongoDB is the only service that is manually managed due to some of the intricate

configurations that had to be done to connect the different nodes. Like the other services,

the database is also only internally available within the cluster to enhance security.

The MongoDB database is placed on the Helsinki and Falkenstein nodes, configured as a

replica set. MongoDB will automatically replicate data across the two databases, and should

one fail, the other can take over to maximize uptime and make the entire setup fault-safe.

External availability

The only services that are externally available is the rest API. The rest API retrieves data

from our database and exposes it publicly. Front-end applications can then consume the

API, and in this case, our Android app relies on the information given in the API.

CHAPTER 2. THE SOLUTION 12

2.2.3 Sentinel Satellite Scraper

The Sentinel Satellite Scraper (SSS) is a python script created to scrape and continuously

download satellite imagery from given geo-locations. The script was created as EcoBeach

relies on the analysis of geo-locations to determine how shorelines are changing. Because

of this, it requires a steady input of data to reliable show how shorelines historically and

currently have changed.

The SSS runs every week to scrape satellite images for beaches in Denmark, Sweden, Ger-

many, and Great Britain. Each subsequent run scrapes imagery three years back from the

current date. It only downloads images that the EcoBeach pipeline has not previously pro-

cessed by caching completed work. Subsequent runs are much faster due to this caching

strategy.

To understand the intricacies of the SSS, one must understand the format of the data down-

loaded from the Sentinel Satellite. It is essential to mention the script downloads satellite

imagery from the Sentinel-2 satellite.

Sentinel-2 satellite data products

The Sentinel-2 satellite has two types of products available for download. The two product

types are Level-1C and Level-2A as illustrated in Table 2.2.

Product

name

High-level Description Data Volume

Level-1C Top-of-atmosphere 600MB — 100x100 km2

Level-2A Bottom-of-atmosphere 800MB — 100x100 km2

Table 2.2: The different products available from the Sentinel-2 sattelite. Adapted from

Sentinel-2 data products

EcoBeach relies on Level-2A products, as these are ground images and not atmospheric

images. The Level-2A products can be downloaded in 3 different spatial resolutions, 10m,

20m, 60m, all as tiles covering 100x100 km2. The spatial resolution defines how many cubic

meters each pixel covers and what spectral bands are available. Naturally, the lower the

spatial resolution is, the more detailed the product is. However, it also increases its size to

∼ 1GB per product at 10m spatial resolution.

https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-2/data-products

CHAPTER 2. THE SOLUTION 13

As previously mentioned, each spatial resolution contains different spectral bands. The

10m spectral resolution is the one the SSS uses, and it includes four spectral bands: band 2,

band 3, band 4, and band 8, which defines the different wavelengths the Sentinel-2 Satellite

can capture. The specifications of these bands can be seen in Table 2.3. [3]

Band Central wavelength Color

B2 496.6 nm Blue

B3 560.0 nm Green

B4 664.5 nm Red

B8 836.1 nm Visible and Near Infrared

(VNIR)

Table 2.3: The four spectral bands included with the 10m spectral resolution. Adapted from

Sentinel-2 data products

The implementation and design

SSS uses quite a few python libraries to download products, combine bands, pre-processing,

and produce Kafka messages. The first and arguably the most important is the sentinelloader

library. The sentinelloader library is in control of the logic related to downloading the

products from Sentinel-2, combining bands, and cropping the resulting image to the location

of interest. Lets first have a look at the entry point of the script the scrape(args) method in

Figure 2.1.

The scraping method first instantiates the Sentinel2Loader from the sentinelloader li-

brary with the folder to download products too, the Copernicus user, the desired cloud

coverage percentage, and the log level. After initialisation the locations to scrape for are

read in from one of many excel files located in the scrapers directory. Each of these Excel files

contains geo-locations on beaches in a specific country and come from a publicly available

dataset from the European Environmental Agency [4].

When the Excel data has been read to memory, the main scraping loop begins, where

it randomly selects a non-processed beach and proceeds. Randomly selecting a beach is a

deliberate choice as the Copernicus API restricts the number of offline products that can

be downloaded to 20 each day. Mixing up which locations we query historical data from

ensures we use the offline product retrievals differently each time the script is run. Thus, we

improve the chances of getting historical data for different areas over time.

Next, the different needed parameters are extracted from the excel data, and the process

of downloading products, combining bands, and cropping the resulting images is started by

https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-2/data-products

CHAPTER 2. THE SOLUTION 14

Figure 2.1: The scrape(args) methodh that is the entry point of the SSS.

the getRegionHistory(...) method call. This call is called with the country code, the location

name, a search area that defines the boundary of the location of interest, the index we want

to combine bands, the spatial resolution, the from date, and lastly, the to date.

As indicated by the “NDWI MacFeeters“ parameter, the combination of bands happens

accordingly to the Normalized Difference Water Index (NDWI) [5]. The MacFeeters formula

for NDWI combines the bands into an image that differentiates water from land. The NDWI

uses a simple formula to combine band 3 and band 8 to give a value between 0 and 1 for

each pixel that indicates how likely that pixel is to be either water or land. [6]

NDWI =
B3 −B8

B3 + B8

Furthermore, the cropping of the image relies on the provided search area that defines

the boundaries of the location of interest. Sentinelloader automatically crops out the area of

CHAPTER 2. THE SOLUTION 15

interest from the downloaded product(s). In cases where the place of interest covers multiple

products, the sentinelloader library can download, combine and crop the image from various

products, so no data is lost.

After having downloaded products, combined bands, and cropped the resulting image,

custom pre-processing is done on the resulting image to color it based on the NDWI values

and to ensure the image size is as compact as possible. This work happens in the process-

GeoTiffImages(...).

Figure 2.2: The scrape(args) method that is the entry point of the SSS.

First, the desired image name and path of the pre-processed images are constructed from

the downloaded images from the sentinelloader. Then the downloaded images are passed on

to the processImage(...) method that first creates a new image from one of the downloaded

images. The new image is combined with a black and white color map that paints any pixel

with an NDWI value greater than 0.6 white, and any pixel with an NDWI value smaller

than 0.6 black. Two of these images can be seen in Figure 2.3.

Finally, the image and relevant metadata are compressed to JSON and published to

Kafka. After this, all downloaded satellite imagery is deleted to clear up valuable space

for processing the following location. If this cleanup process is skipped, the downloaded

products would quickly fill up the remaining disk space on the machines where the script is

run.

CHAPTER 2. THE SOLUTION 16

Figure 2.3: Processed images of Ejerslevlyng (left) and Gl Strandskov (right) beaches in DK

with the black and white colormap applied.

2.2.4 Spark NDWI Analyzer

The Spark NDWI Analyzer is a python spark job created to continuously consume and an-

alyze messages from Kafka to provide insight into what the scraped satellite images can tell

us about the water content changes. EcoBeach relies on distributed Spark workers to handle

this job, to efficiently analyze newly scraped satellite images, and feed the results back to

Kafka.

The Spark NDWI Analyzer runs constantly and watches for changes to the Kafka topic

“ndwi images“. Whenever a new message is added to the topic, the Spark NDWI Analyzer

consumes this message, analyzes it, and produces a new message to the “ndwi results“ topic

that holds all data that the data pipeline has fully processed.

The analysis is a three-step process. First the black and white images in Figure 2.3 that are

created by the SSS are recreated. The images are stored in the Kafka message that contains

the image encrypted as byte64. Then all white and black pixels are counted in the image,

and lastly, the percentage and area (in cubic meters) of both white (water) and black (land)

pixels are calculated. The relevant code is shown in Figure 2.4.

CHAPTER 2. THE SOLUTION 17

Figure 2.4: The code that recreates the black-and-white images, counts pixels and calculates

percentage and area (in cubic meters) of water and land.

2.2.5 WebAPI

Our system requires a Web API to handle the data flow between the Android application

and the database. This is first and foremost done to increase security and prevent any direct

access to the database from the application. In our case, our application only requests data

from the API, it does not add or change any items in the database, so this is a one-way

dataflow.

The API accesses the MongoDB database via MongoDB Driver which is an Object–relational

mapping (ORM) tool that we use to map data coming from the database to actual Beach

objects which the API can handle, process and send as Json objects to endpoint-callers.

The API is deployed in a Docker container for easier testing and configurability. The

database connection string can then be set in a system environment variable when launching

the container. Once the container is running data can be requested on two endpoints.

CHAPTER 2. THE SOLUTION 18

/api/Beach

The application can call the API to request all the stored beach data from the database.

This is first used when the application has to display the pins on the map, indicating the

locations of all the beaches. The requested data is sent by the API in a JSON format, which

is processed by the Android application into actual Beach objects.

/api/Beach/id

The application can also call an API request to get a single beach item from the database,

based on the provided ID. This call is used when the user selects a beach in the application,

and the detailed information is requested to display it for the user.

Architecture

The backend services hosting the API is a multi-tier architecture system which breaks down

into three main components:

• Presentation Tier – in this system’s case, it contains the hosted API which can be

called externally. It contains the controllers that handle all the API requests received.

• Logic Tier – This tier mainly contains the models and helper classes. Models describe

the type of object the ORM should map the data from the database. Also provides

methods to read files with .csv extensions and use them to seed an empty database

with beaches from the environmental agency’s dataset.

• Data Tier – Provides services and context for the backend to reach the MongoDB

database and queries it for data when needed.

Introducing multiple tiers in our architecture allows us to have a very decoupled system

in case a tier needs to be changed, or used in another system of similar kind.

CHAPTER 2. THE SOLUTION 19

Figure 2.5: WebAPI Multi-layer architecture

2.2.6 EcoBeach App

Activities and layouts

The most important component of an application is the Activity, which is not only respon-

sible for the user interface, but also for the operation of the application itself. During the

implementation, three Activities have been created. These activities are the followings:

• SplashScreenActivity - After starting the application this is the first thing that the

user can see for two seconds. On the centre of the screen there is the logo of the

application and below that, there is the name of the application. We used Constraint

layout, which is one of the latest and most efficient layout types.

• MainActivity - In this activity the user can see the Google Maps, with markers, that

shows the different beaches in Europe. At first, it is going to focus on the user’s

location.

• BeachActvity - Here you can see more information about a specific beach and can see

a satellite map focused on the location.

Each activity has their own layout, on the following pictures, you can see three screenshots

of the different layouts.

CHAPTER 2. THE SOLUTION 20

Figure 2.6: Screenshots of SplashScreenActivity (left), MainActivity (center) and BeachAc-

tivity (right).

Navigation

On Figure 2.7, the navigation between the activities is shown. After starting the application,

the users can see the SplashScreen Activity for two seconds, then they are navigated to the

MainActivity, which shows them the marked Google Maps. Clicking on a marked place the

user is navigated to the BeachActivity, where they can be informed about the beach, like

the name of the beach, the coordinates, and about the shoreline changes.

Having Internet and location enabled are very important, so in the MainActivity both

are checked. If either the Internet or the location is not enabled, the user receives an alert,

and the application is closed.

CHAPTER 2. THE SOLUTION 21

Figure 2.7: Navigation between the Activities.

User permissions

Three permissions are needed to use this application. These permissions can be seen on

Figure 2.8.

Figure 2.8: The user must grant these permissions in order to use the EcoBeach application.

Location permissions are needed for getting the user’s location. If the user is not accepting

it, then the application is closed automatically, since the app is based on having the location

permission.

CHAPTER 2. THE SOLUTION 22

Internet is needed for Google Maps, so that we can display different beaches on the map.

Without this, we are unable to show the map in the MainActivity. However, the internet is

not only used for Google Maps, but also for the Web API.

Chapter 3: Conclusion

As a solution to the enclosing threat of rising shorelines, we have developed a proof of

concept system called EcoBeach. EcoBeach is a highly scalable system that monitors water

content changes from satellite imagery in real-time. EcoBeach’s data pipeline ensures high

availability and few points of failure. Data is continuously fed to a distributed MongoDB

database, so it is readily available from an Android application that can query, plot, and

visualize the monitored locations in correlation to a user’s location.

The data pipeline resides in a docker swarm cluster that consists of three servers, two in

Germany - more specifically in Nuremberg and Falkenstein. The third server is in Helsinki,

Finland, which is the name node of our cluster. Each server has a scraper that downloads

and processes satellite imagery from Copernicus. The scrapers publish their data to a specific

Kafka topic for each node. Apache Spark master also runs on the Helsinki node, distributing

spark jobs to worker nodes to analyze the beach images. Once data has been analyzed, it

is saved to another Kafka topic. A Kafka Connect Sink is set up to feed the data from this

topic into our distributed MongoDB database. The database is hosted on two nodes for

redundancy.

Our frontend is an Android application that runs the Google Maps API to display a map

the user can navigate. Once the application is loaded, it requests data from one of the Web

API endpoints that also resides in the cluster. The API then makes a data request to the

database and maps the received data into one or more beach objects. The API then sends

the object in a JSON format to the app, which processes it and uses the geolocation data to

place each beach on the map.

The system’s goal is to provide users a simple way to see how their environment changes

in real-time due to climate change and raise awareness of how the sea level rises around the

world.

23

Acronyms 24

Acronyms

NDWI Normalized Difference Water Index. 4, 14, 15

SSS Sentinel Satellite Scraper. 10, 12, 13, 14, 15, 16

Bibliography

[1] A. Cazenave and G. L. Cozannet, “Sea level rise and its coastal impacts,” en, Earth’s

Future, vol. 2, no. 2, pp. 15–34, Feb. 2014, issn: 2328-4277, 2328-4277. doi: 10.1002/

2013EF000188. [Online]. Available: https://onlinelibrary.wiley.com/doi/10.

1002/2013EF000188 (visited on 01/01/2022).

[2] The Maeslantkering storm surge barrier, en, Feb. 2013. [Online]. Available: https://

www.holland.com/global/tourism/destinations/provinces/south-holland/the-

maeslantkering-storm-surge-barrier.htm (visited on 01/01/2022).

[3] Sentinel-2 product specification, en. [Online]. Available: https://sentinel.esa.int/

documents/247904/685211/Sentinel-2-Products-Specification-Document (vis-

ited on 01/01/2022).

[4] Bathing Water Directive - Status of bathing water — European Environment Agency,

en, Data. [Online]. Available: https://www.eea.europa.eu/data-and-maps/data/

bathing-water-directive-status-of-bathing-water-13 (visited on 01/01/2022).

[5] Normalized difference water index, en. [Online]. Available: https://en.wikipedia.

org/wiki/Normalized_difference_water_index (visited on 01/01/2022).

[6] Sentinel-2 bands combinations, en. [Online]. Available: https://gisgeography.com/

sentinel-2-bands-combinations/ (visited on 01/01/2022).

25

https://doi.org/10.1002/2013EF000188
https://doi.org/10.1002/2013EF000188
https://onlinelibrary.wiley.com/doi/10.1002/2013EF000188
https://onlinelibrary.wiley.com/doi/10.1002/2013EF000188
https://www.holland.com/global/tourism/destinations/provinces/south-holland/the-maeslantkering-storm-surge-barrier.htm
https://www.holland.com/global/tourism/destinations/provinces/south-holland/the-maeslantkering-storm-surge-barrier.htm
https://www.holland.com/global/tourism/destinations/provinces/south-holland/the-maeslantkering-storm-surge-barrier.htm
https://sentinel.esa.int/documents/247904/685211/Sentinel-2-Products-Specification-Document
https://sentinel.esa.int/documents/247904/685211/Sentinel-2-Products-Specification-Document
https://www.eea.europa.eu/data-and-maps/data/bathing-water-directive-status-of-bathing-water-13
https://www.eea.europa.eu/data-and-maps/data/bathing-water-directive-status-of-bathing-water-13
https://en.wikipedia.org/wiki/Normalized_difference_water_index
https://en.wikipedia.org/wiki/Normalized_difference_water_index
https://gisgeography.com/sentinel-2-bands-combinations/
https://gisgeography.com/sentinel-2-bands-combinations/

Appendix A: Infrastructure Diagram

Figure A.1: The infrastructure of EcoBeach and how the included services relate to

each other.

26

	The Problem
	Problem and Objective
	Problem Description

	The Solution
	Solution Approach
	Advantages and Disadvantages

	Solution Description
	Big Data stack
	The infrastructure
	Sentinel Satellite Scraper
	Spark NDWI Analyzer
	WebAPI
	EcoBeach App

	Conclusion
	Acronyms

	Bibliography
	Infrastructure Diagram

